440/640 Test 1 — Outline

Formulation of LPs

decision variables, objective function, constraints standard *equality* form (min c^Tx , Ax = b, $x \ge 0$) feasible solutions, optimal solutions infeasible problems, unbounded problems transformations to other forms: e.g., standard *inequality* forms

Algebraic Representation

standard equality form (min $c^T x$, Ax = b, $x \ge 0$)

basic variables, nonbasic variables

matrix formulation $A = [B \ N], x = [x_B \ x_N]^T$

basic feasible solution (BFS), basic infeasible solution

 $x_B = B^{-1}b - B^{-1}Nx_N$

degeneracy of BFS

optimality of BFS, reduced costs

$$z = c_B^T B^{-1} b + (c_N^T - c_B^T B^{-1} N) x_N$$

Geometric Representation

hyperplanes, half spaces, normal vectors feasible region (FR) as intersection of half spaces corner point of FR \rightarrow BFS unbounded objective function alternative optimal solutions degeneracy solution by geometric method

Simplex Method

move from BFS x to adjacent BFS x' find improving direction d and step size $\alpha \ge 0$ update $x' = x + \alpha d$ detect unbounded problems tie-breaking rules degeneracy and cycling Bland's rule initial basic feasible solution Phase I LP: can detect infeasibility uniqueness vs. alternative optimal solutions Duality

defined for standard equality form general construction of dual LP properties of primal-dual pair weak duality strong duality table of possible primal-dual outcomes dual variables and reduced costs $u^{T} = c_{B}^{T} B^{-1}$ reduced costs ≥ 0 (primal) \Leftrightarrow feasibility (dual)